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aEquipe Sciences des Matériaux, Faculté des Sciences et Techniques Errachidia,

Morocco, bLaboratoire d’Elaboration, Analyse Chimique et Ingénierie, Département
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Single crystals of lithium zinc vanadate, LiZnVO4, were grown

by the flux method. The structural type of this vanadate is

characterized by a three-dimensional arrangement of tetra-

hedra sharing apices in an LiZnVO4 network. This arrange-

ment contains three different tetrahedra, namely one [VO4]

and two disordered mixed-site [Li/ZnO4] tetrahedra. The

resulting lattice gives rise to hexagonal channels running along

the [0001] direction. Both sites in the mixed-site [Li/ZnO4]

tetrahedra are occupied by a statistical mixture of lithium and

zinc with a 1:1 ratio. Therefore, LiZnVO4 appears to be the

first vanadate known to crystallize with a disordered phenacite

structure. Moreover, the resulting values of calculated bond

valences (Li = 1.083, Zn = 2.062 and V = 5.185) tend to confirm

the structural model.

Related literature

For related structural studies, see: Hartmann (1989); Capsoni

et al. (2006); Zachariasen (1971). For compounds with the

same structural type, see: Bu et al. (1996); Elammari &

Elouadi (1989); Elouadi & Elammari (1990); Jensen et al.

(1998). For bond-valence calculations, see: Brown & Alter-

matt (1985).

Experimental

Crystal data

LiZnVO4

Mr = 187.25
Trigonal, R3
a = 14.107 (3) Å
c = 9.441 (2) Å
V = 1627.1 (6) Å3

Z = 18
Mo K� radiation
� = 9.06 mm�1

T = 298 K
0.14 � 0.12 � 0.10 mm

Data collection

Bruker X8 APEXII CCD area-
detector diffractometer

Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
Tmin = 0.292, Tmax = 0.404

9709 measured reflections
1622 independent reflections
1213 reflections with I > 2�(I)
Rint = 0.070

Refinement

R[F 2 > 2�(F 2)] = 0.024
wR(F 2) = 0.055
S = 1.04
1622 reflections

69 parameters
��max = 0.51 e Å�3

��min = �0.53 e Å�3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT

(Bruker, 2005); data reduction: SAINT; program(s) used to solve

structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine

structure: SHELXL97 (Sheldrick, 2008); molecular graphics:

ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009);

software used to prepare material for publication: WinGX (Farrugia,

1999).

The authors thanks the Unit of Support for Technical and

Scientific Research (UATRS, CNRST) for the X-ray

measurements.

Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: FJ2291).
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Disordered LiZnVO4 with a phenacite structure
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Comment

Our particular interest here is to investigate the form nature of the crystallized phase and determine the structural type that
could result from the association of small size cations likely to enter under normal conditions of pressure and temperature,
tetrahedral cavities of oxides like in phenacite Be2SiO4 network (Hartmann, 1989; Zachariasen, 1971). The compounds

currently known to crystallize with such structural type are LiZnPO4 (Bu et al., 1996; Elammari & Elouadi, 1989; Elouadi

& Elammari, 1990) and LiZnAsO4 (Jensen et al., 1998).

The structural type of the title compound, related to the phenacite structure, could be described (Fig.1) as three dimen-
sional arrangement of [MO4] tetrahedra ( M= Li/Zn or V) sharing apices. The arrangement concerns three different types

of tetrahedra [VO4] and two disordered sites [Li/ZnO4] which give rise to an overall disordered phenacite structure. When

viewed along the c axis, the packing of [MO4] tetraherdra results in two types of tunnels: large hexagonal tunnels surroun-

ded by six lozenge like channels (rings of four tetrahedra). Similar description has recently been reported by Capsoni et al.
(2006) using a powder x-ray diffraction data of LiZnVO4. However, a careful observation of the two models can highlights

the difference between our two results. Indeed, in addition to the difference of the lengths of chemical bonds, the occupancy
rate of cationic Wycoff sites is different. Thus, in our model, there is only a disorder between Li and Zn with a statistical
distribution of both ions on the two crystallographic sites, while the third site is only occupied by vanadium cation. Fur-
thermore, A bond-valence analysis (Li <1.083>, Zn<2.062> and <V<5.185>) based on the empirical formula proposed by
Brown & Altermatt (1985) is in favor of this model . The cationic disorder mentioned by Capsoni et al. could be seen as
due to preparation methods. The powder used was slowly cooled from 853 K after 24 h sintering. Whereas, the growth of
our crystal, from a flux melted at 1073 k and slowly cooled with a rate of 5 K h-1. Thus the resulting sintering of our crystal
was much longer. A more ordred system is then to be expected.

When such structural type is seen as a close packing of oxygen anions, it appears as a lacunar hexagonal close packing

of O2- ions. Fig.2 shows a typical oxygen layer and the elevation of such oxygen plans as successively stacked ( ABAB···)
along [0001]. The coordination sphere of all cations is of tetrahedral type. The analysis of oxygen environment shows a

regular triangular cavity for O2- anions with an average edge length of <V—Li/Zn> = 3.240 Å.

In the case of the present form of LiZnVO4, the disordered phenacite structure was attributed to the existence of a mixed

tetrahedral site [Li/ZnO4] occupied by both Li and Zn. The resulting space group is R-3. LiZnVO4 is probably the first

vanadate known to crystallize with a disordered phenacite structure.

Experimental

Prior to the crystal growth, pulverulent samples of the compound LiZnVO4 and the flux LiVO3 are synthesized by the

regular solid state reaction according to the following reactions:

http://dx.doi.org/10.1107/S1600536810013358
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Azrour,%20M.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Elouadi,%20B.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=El%20Ammari,%20L.
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Li2CO3 + 2ZnO + V2O5 —> 2LiZnVO4 + CO2 Li2CO3 + V2O5 —> 2LiVO3 + CO2

Single crystal of the monovanadate LiZnVO4 were grown from a bath of equimolar mixture of freohly prepared powders

of LiZnVO4 and LiVO3. The starting mixture was thoroughly ground before to be melted at 1073 K in a platinum crucible

and slowly cooled with a rate of 5 K h-1 to 773 K. The furnace was then switched off and the whole system naturally cooled
down to room temperature. Single crystal s were collected from the crucible after dissolwing the flux in warmed water.

Figures

Fig. 1. : A three-dimensional view of LiZnVO4 crystal structure, showing tunnels runnig
along the c axis.

Fig. 2. : Partial projection of the crystal structure on (0 0 1), showing lacunar hexagonal close
packing of O2- ions.

lithium zinc vanadate

Crystal data

LiZnVO4 Dx = 3.440 Mg m−3

Mr = 187.25 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3 Cell parameters from 9709 reflections
Hall symbol: -R 3 θ = 10–30°
a = 14.107 (3) Å µ = 9.06 mm−1

c = 9.441 (2) Å T = 298 K

V = 1627.1 (6) Å3 Prism, pale yellow
Z = 18 0.14 × 0.12 × 0.10 mm
F(000) = 1584

Data collection

Bruker X8 APEXII CCD area-detector
diffractometer 1622 independent reflections

Radiation source: fine-focus sealed tube 1213 reflections with I > 2σ(I)
graphite Rint = 0.070

φ and ω scans θmax = 35.2°, θmin = 4.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003) h = −22→22

Tmin = 0.292, Tmax = 0.404 k = −22→22
9709 measured reflections l = −15→15
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Refinement

Refinement on F2 Primary atom site location: structure-invariant direct
methods

Least-squares matrix: full Secondary atom site location: difference Fourier map

R[F2 > 2σ(F2)] = 0.024
w = 1/[σ2(Fo

2) + (0.0124P)2 + 2.5069P]
where P = (Fo

2 + 2Fc
2)/3

wR(F2) = 0.055 (Δ/σ)max = 0.001

S = 1.04 Δρmax = 0.51 e Å−3

1622 reflections Δρmin = −0.53 e Å−3

69 parameters
Extinction correction: SHELXL97 (Sheldrick, 2008),
Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

0 restraints Extinction coefficient: 0.0088 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The
cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds
in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used
for estimating esds involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic

errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero

for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of

reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL
data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
V1 0.454581 (17) 0.138171 (16) 0.08352 (2) 0.00790 (7)
Zn1 0.45273 (2) 0.14015 (2) −0.24915 (3) 0.01132 (7) 0.50
Li1 0.45273 (2) 0.14015 (2) −0.24915 (3) 0.01132 (7) 0.50
Zn2 0.64622 (2) 0.12175 (3) 0.24882 (3) 0.01150 (7) 0.50
Li2 0.64622 (2) 0.12175 (3) 0.24882 (3) 0.01150 (7) 0.50
O1 0.34102 (7) 0.01142 (7) 0.08427 (11) 0.01335 (17)
O2 0.56475 (8) 0.11882 (9) 0.08215 (10) 0.01353 (17)
O3 0.45578 (8) 0.20780 (8) −0.06565 (10) 0.01419 (18)
O4 0.45936 (8) 0.20728 (8) 0.23409 (10) 0.01377 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

V1 0.00918 (10) 0.00812 (10) 0.00692 (9) 0.00472 (8) −0.00012 (6) −0.00004 (6)
Zn1 0.01190 (12) 0.01217 (13) 0.01038 (12) 0.00637 (10) 0.00052 (9) 0.00069 (9)
Li1 0.01190 (12) 0.01217 (13) 0.01038 (12) 0.00637 (10) 0.00052 (9) 0.00069 (9)
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Zn2 0.01159 (13) 0.01368 (13) 0.01016 (12) 0.00701 (10) 0.00005 (9) 0.00037 (9)
Li2 0.01159 (13) 0.01368 (13) 0.01016 (12) 0.00701 (10) 0.00005 (9) 0.00037 (9)
O1 0.0109 (4) 0.0102 (4) 0.0180 (4) 0.0046 (3) −0.0010 (3) 0.0000 (3)
O2 0.0121 (4) 0.0198 (4) 0.0115 (3) 0.0101 (3) −0.0005 (3) −0.0005 (3)
O3 0.0219 (5) 0.0120 (4) 0.0103 (3) 0.0096 (3) −0.0007 (3) 0.0009 (3)
O4 0.0209 (4) 0.0125 (4) 0.0104 (4) 0.0102 (4) 0.0003 (3) −0.0004 (3)

Geometric parameters (Å, °)

V1—O1 1.7027 (10) Zn2—O2 1.9368 (10)
V1—O4 1.7059 (10) Zn2—O4x 1.9495 (10)

V1—O2 1.7071 (10) Zn2—O4xi 1.9676 (11)

V1—O3 1.7123 (10) Zn2—Li1iv 3.1441 (8)

V1—Li2i 3.1568 (7) Zn2—Zn1iv 3.1441 (8)

V1—Li1ii 3.1719 (8) Zn2—Li1viii 3.2314 (8)

V1—Li2iii 3.2409 (8) Zn2—Li2i 3.2675 (7)

V1—Li1iv 3.2523 (6) Zn2—Li2x 3.2676 (7)

V1—Li2v 3.2978 (7) O1—Li2iii 1.9294 (11)

V1—Li1vi 3.3232 (7) O1—Zn2iii 1.9294 (11)

Zn1—O2vi 1.9410 (10) O1—Zn1ii 1.9442 (11)

Zn1—O1vii 1.9441 (11) O1—Li1ii 1.9442 (11)

Zn1—O3iv 1.9588 (11) O2—Li1iv 1.9411 (10)

Zn1—O3 1.9679 (11) O2—Zn1iv 1.9411 (10)

Zn1—Zn2vi 3.1441 (8) O3—Li1vi 1.9587 (11)

Zn1—Li2vi 3.1441 (8) O3—Zn1vi 1.9587 (11)

Zn1—Li2viii 3.2314 (8) O4—Li2i 1.9496 (10)

Zn1—Li1vi 3.2765 (7) O4—Zn2i 1.9496 (10)

Zn1—Li1iv 3.2766 (7) O4—Li2v 1.9676 (11)

Zn2—O1ix 1.9294 (11) O4—Zn2v 1.9676 (11)

O1—V1—O4 110.14 (5) O2vi—Zn1—O3 115.71 (4)

O1—V1—O2 106.61 (5) O1vii—Zn1—O3 106.57 (4)

O4—V1—O2 108.58 (5) O3iv—Zn1—O3 110.08 (5)

O1—V1—O3 109.88 (5) O1ix—Zn2—O2 111.98 (5)

O4—V1—O3 111.80 (5) O1ix—Zn2—O4x 108.76 (4)

O2—V1—O3 109.69 (5) O2—Zn2—O4x 117.26 (4)

O2vi—Zn1—O1vii 109.39 (5) O1ix—Zn2—O4xi 102.55 (4)

O2vi—Zn1—O3iv 106.12 (4) O2—Zn2—O4xi 107.30 (4)

O1vii—Zn1—O3iv 108.84 (4) O4x—Zn2—O4xi 107.87 (5)
Symmetry codes: (i) y+1/3, −x+y+2/3, −z+2/3; (ii) −x+y+2/3, −x+1/3, z+1/3; (iii) x−y−1/3, x−2/3, −z+1/3; (iv) x−y+1/3, x−1/3, −z−1/3;
(v) −x+y+1, −x+1, z; (vi) y+1/3, −x+y+2/3, −z−1/3; (vii) −y+1/3, x−y−1/3, z−1/3; (viii) −x+1, −y, −z; (ix) y+2/3, −x+y+1/3, −z+1/3; (x)
x−y+1/3, x−1/3, −z+2/3; (xi) −y+1, x−y, z.
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Fig. 1
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Fig. 2


